MA461  Exercise Biology and Sport Performance Analysis II (15 ECTS) 

Course facts

Course code
MA461
Course title
Exercise Biology and Sport Performance Analysis II
ECTS
15 ECTS
Semester
Spring
Course language
English
Academic responsible
Olivier Seynnes

Introduction

This course provides a deeper insight into

  • the cellular and molecular mechanisms underlying the adaptation we see in skeletal muscle during physical exercise and after alterations in nutrition. 
  • biomechanical analysis of human movement and associated methodologies.
  • technologies to study human movements and performance. 

The course is of advanced content, designed to cover current and ‘hot’ topics in these areas by members of staff who are undertaking and publishing research in those topics. The course offers 12-15 seminars with associated learning objectives and students will choose 6 of these seminars and their learning objectives. 

Learning outcomes

After completing the course the student can

  • critically evaluate and discuss results from key research in the area.
  • identify relevant theories and methodologies required for applied situations. 
  • explain and discuss the important cellular and molecular responses to exercise and nutrition and the mechanisms that initiate and control these adaptations.
  • discuss the possible transfer from cellular adaptations to changes in exercise performance
  • explain and discuss biomechanical theories and methods in the fields related to human motion and muscle function. 
  • demonstrate understanding of sport performance analytic approaches and methods used in individual- and team sports. 
  • illustrate how to adapt study designs in sport performance projects to fit the population, external and contextual conditions. 

Learning styles and activities

Each seminar consists of 2 classes:

  • an introductory lecture on a specific topic, and
  • a session of students’ presentations and discussions.

For the presentation sessions, the students will read in advance 3-4 articles related to the lecture content. Three designated groups of 2-3 students will present one article each, followed by questions and group discussion.

Mandatory assignment

Students shall participate actively and sufficiently (>80%) in the presentations classes and must present an article in 3 of their elected seminars.

The presentations/participation must be approved before the final exam.

Assessment

Essay. Graded A-F.

  • The students are given 14 days to hand in an essay at the end of the course, up to 6500-words (including bibliography). Essay topics will be assigned amongst topics addressed during the seminar.

Core material

Electronic articles:
NB! To open electronic articles off campus, you need to use the following VPN connection.

Physiology
The molecular response and adaptation to muscle growth and loss:
Hammarström, D., Øfsteng, S., Koll, L., Hanestadhaugen, M., Hollan, I., Apró, W., Whist, J. E., Blomstrand, E., Rønnestad, B. R., & Ellefsen, S. (2020). Benefits of higher resistance‐training volume are related to ribosome biogenesis. The Journal of Physiology, 598(3), 543-565. https://doi.org/10.1113/JP278455

Davids, C. J., Næss, T. C., Moen, M., Cumming, K. T., Horwath, O., Psilander, N., Ekblom, B., Coombes, J. S., Peake, J., Raastad, T., & Roberts, L. A. (2021). Acute cellular and molecular responses and chronic adaptations to low-load blood flow restriction and high-load resistance exercise in trained individuals. Journal of Applied Physiology (1985), 131(6), 1731-1749. https://doi.org/10.1152/japplphysiol.00464.2021

West, D. W. D., Baehr, L. M., Marcotte, G. R., Chason, C. M., Tolento, L., Gomes, A. V., Bodine, S. C., & Baar, K. (2016). Acute resistance exercise activates rapamycin-sensitive and -insensitive mechanisms that control translational activity and capacity in skeletal muscle: Translational activity and capacity in skeletal muscle. The Journal of Physiology, 594(2), 453-468. https://doi.org/10.1113/JP271365

Review papers:
Roberts, M. D., McCarthy, J. J., Hornberger, T. A., Phillips, S. M., Mackey, A. L., Nader, G. A., Boppart, M. D., Kavazis, A. N., Reidy, P. T., Ogasawara, R., Libardi, C. A., Ugrinowitsch, C., Booth, F. W., & Esser, K. A. (2023). Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: Current understanding and future directions. Physiological Reviews103(4), 2679–2757. https://doi.org/10.1152/physrev.00039.2022

Nunes, E. A., Stokes, T., McKendry, J., Currier, B. S., & Phillips, S. M. (2022). Disuse-induced skeletal muscle atrophy in disease and nondisease states in humans: Mechanisms, prevention, and recovery strategies. American Journal of Physiology. Cell Physiology322(6), C1068–C1084. https://doi.org/10.1152/ajpcell.00425.2021

Does skeletal muscle have a memory:
Turner, D. C., Seaborne, R. A., & Sharples, A. P. (2019). Comparative transcriptome and methylome analysis in human skeletal muscle anabolism, hypertrophy and epigenetic memory. Scientific Reports, 9(1), 4251. https://doi.org/10.1038/s41598-019-40787-0

Blocquiaux, S., Ramaekers, M., Van Thienen, R., Nielens, H., Delecluse, C., De Bock, K., & Thomis, M. (2022). Recurrent training rejuvenates and enhances transcriptome and methylome responses in young and older human muscle. JCSM Rapid Communications, 5(1), 10-32. https://doi.org/10.1002/rco2.52

Psilander, N., Eftestøl, E., Cumming, K. T., Juvkam, I., Ekblom, M. M., Sunding, K., Wernbom, M., Holmberg, H. C., Ekblom, B., Bruusgaard, J. C., Raastad, T., & Gundersen, K. (2019). Effects of training, detraining, and retraining on strength, hypertrophy, and myonuclear number in human skeletal muscle. Journal of Applied Physiology (1985), 126(6), 1636–1645. https://doi.org/10.1152/japplphysiol.00917.2018

Review paper:
Sharples, A. P., & Turner, D. C. (2023). Skeletal muscle memory. American Journal of Physiology. Cell Physiology324(6), C1274–C1294. https://doi.org/10.1152/ajpcell.00099.2023

The physiology of high intensity exercise:
Gaitanos, G. C., Williams, C., Boobis, L. H., & Brooks, S. (1993). Human muscle metabolism during intermittent maximal exercise. Journal of Applied Physiology (1985), 75(2), 712-719. https://doi.org/10.1152/jappl.1993.75.2.712

Martin-Rincon, M., Gelabert-Rebato, M., Perez-Valera, M., Galvan-Alvarez, V., Morales-Alamo, D., Dorado, C., Boushel, R., Hallen, J., & Calbet, J. A. L. (2021). Functional reserve and sex differences during exercise to exhaustion revealed by post-exercise ischaemia and repeated supramaximal exercise. Journal of Physiology, 599(16), 3853-3878. https://doi.org/10.1113/jp281293

Zinner, C., Morales-Alamo, D., Ørtenblad, N., Larsen, F. J., Schiffer, T. A., Willis, S. J., Gelabert-Rebato, M., Perez-Valera, M., Boushel, R., Calbet, J. A., & Holmberg, H. C. (2016). The physiological mechanisms of performanceeEnhancement with sprint interval training differ between the upper and lower extremities in humans. Frontiers in Physiology, 7, 426. https://doi.org/10.3389/fphys.2016.00426

Review paper:
Calbet, J. A. L., Martín-Rodríguez, S., Martin-Rincon, M., & Morales-Alamo, D. (2020). An integrative approach to the regulation of mitochondrial respiration during exercise: Focus on high-intensity exercise. Redox Biolology, 35, 101478. https://doi.org/10.1016/j.redox.2020.101478

Influence of sex and female hormones on performance and response to training:
Hansen, M., Kongsgaard, M., Holm, L., Skovgaard, D., Magnusson, S. P., Qvortrup, K., Larsen, J. O., Aagaard, P., Dahl, M., Serup, A., Frystyk, J., Flyvbjerg, A., Langberg, H., & Kjaer, M. (2009). Effect of estrogen on tendon collagen synthesis, tendon structural characteristics, and biomechanical properties in postmenopausal women. Journal of Applied Physiology (1985), 106(4), 1385-1393. https://doi.org/10.1152/japplphysiol.90935.2008

Lebrun, C. M., Petit, M. A., McKenzie, D. C., Taunton, J. E., & Prior, J. C. (2003). Decreased maximal aerobic capacity with use of a triphasic oral contraceptive in highly active women: A randomised controlled trial. British Journal of Sports Medicine, 37(4), 315-320. https://doi.org/10.1136/bjsm.37.4.315

Minahan, C., Joyce, S., Bulmer, A. C., Cronin, N., & Sabapathy, S. (2015). The influence of estradiol on muscle damage and leg strength after intense eccentric exercise. European Journal of Applied Physiology, 115(7), 1493-1500. https://doi.org/10.1007/s00421-015

Review paper:
Hansen, M. (2018). Female hormones: do they influence muscle and tendon protein metabolism? Proceedings of the Nutrition Society, 77(1), 32-41. https://doi.org/10.1017/s0029665117001951

The effect of nutritional interventions on muscle hypertrophy with strength training:
Hamarsland, H., Handegard, V., Kåshagen, M., Benestad, H. & Raastad, T. (2019). No difference between spray dried milk and native whey supplementation with strength training. Medicine and Science in Sports Exercise, 51(1), 75-83. https://doi.org/10.1249/MSS.0000000000001758

Pinckaers, P. J. M., Hendriks, F. K., Hermans, W. J. H., Goessens, J. P. B., Senden, J. M., VAN Kranenburg, J. M. X., Wodzig, W. K. H. W., Snijders, T., & VAN Loon, L. J. C. (2022). Potato protein ingestion increases muscle protein synthesis rates at rest and during recovery from exercise in humans. Medicine and Science in Sports and Exercise, 54(9), 1572-1581. https://doi.org/10.1249/MSS.0000000000002937

Paulsen, G., Hamarsland, H., Cumming, K. T., Johansen, R. E., Hulmi, J. J., Borsheim, E., Wiig, H., Garthe, I. & Raastad, T. (2014). Vitamin C and E supplementation alters protein signalling after a strength training session, but not muscle growth during 10 weeks of training. Journal of Physiology, 592(24), 5391-5408. https://doi.org/10.1113/jphysiol.2014.279950

Review paper:
Stokes, T., Hector, A. J., Morton, R. W., McGlory, C., & Phillips, S. M. (2018). Recent perspectives regarding the role of dietary protein for the promotion of muscle hypertrophy with resistance exercise training. Nutrients, 10(2). https://www.mdpi.com/2072-6643/10/2/180

Bouviere, J., R. S. Fortunato, C. Dupuy, J. P. Werneck-de-Castro, D. P. Carvalho & R. A. Louzada (2021) Exercise-Stimulated ROS sensitive signaling pathways in skeletal muscle. Antioxidants, 10(4), 537. https://doi.org/10.3390/antiox10040537

Muscular and functional adaptations to low-load blood flow resisted exercise
Davids, C. J., Næss, T. C., Moen, M., Cumming, K. T., Horwath, O., Psilander, N., Ekblom, B., Coombes, J. S., Peake, J., Raastad, T., & Roberts, L. A. (2021). Acute cellular and molecular responses and chronic adaptations to low-load blood flow restriction and high-load resistance exercise in trained individuals. Journal of Applied Physiology, 131(6), 1731-1749. https://doi.org/10.1152/japplphysiol.00464.2021

Hughes, L., Rosenblatt, B., Haddad, F., Gissane, C., McCarthy, D., Clarke, T., Ferris, G., Dawes, J., Paton, B., & Patterson, S. D. (2019). Comparing the effectiveness of blood flow restriction and traditional heavy load resistance training in the post-surgery rehabilitation of anterior cruciate ligament reconstruction patients: A uk national health service randomised controlled trial. Sports Medicine, 49(11), 1787-1805. https://doi.org/10.1007/s40279-019-01137-2

Teixeira, E. L., Ugrinowitsch, C., de Salles Painelli, V., Silva-Batista, C., Aihara, A. Y., Cardoso, F. N., Roschel, H., & Tricoli, V. (2021). Blood flow restriction does not promote additional effects on muscle adaptations when combined with high-load resistance training regardless of blood flow restriction protocol. Journal of Strength and Conditioning Research, 35(5), 1194–1200. https://doi.org/10.1519/JSC.0000000000003965
PDF available through Canvas, not access online.

Review paper:
Lixandrão, M. E., Ugrinowitsch, C., Berton, R., Vechin, F. C., Conceição, M. S., Damas, F., Libardi, C. A., & Roschel, H. (2018). Magnitude of muscle strength and mass adaptations between high-load resistance training versus low-load resistance training associated with blood-flow restriction: A systematic review and meta-analysis. Sports Medicine, 48(2), 361–378. https://doi.org/10.1007/s40279-017-0795-y

Biomechanics:
The kinematics of human running gait:
Dahl, J., Degens, H., Hildebrand, F., & Ganse, B. (2020). Do changes in middle-distance running kinematics contribute to the age-related decline in performance? Journal of Musculoskeletal & Neuronal Interactions, 20(1), 94–100. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7104580/

Leskinen, A., Häkkinen, K., Virmavirta, M., Isolehto, J., & Kyröläinen, H. (2009). Comparison of running kinematics between elite and national-standard 1500-m runners. Sports Biomechanics, 8(1), 1–9. https://doi.org/10.1080/14763140802632382

Willwacher, S., Sanno, M., & Brüggemann, G.-P. (2020). Fatigue matters: An intense 10 km run alters frontal and transverse plane joint kinematics in competitive and recreational adult runners. Gait & Posture, 76, 277–283. https://doi.org/10.1016/j.gaitpost.2019.11.016

Review paper:
Zandbergen, M. A., Marotta, L., Bulthuis, R., Buurke, J. H., Veltink, P. H., & Reenalda, J. (2022). Effects of level running-induced fatigue on running kinematics: A systematic review and meta-analysis. Gait & Posture, 99, 60-75. https://doi.org/10.1016/j.gaitpost.2022.09.089

Understanding forces in the context of running and human movement:
Hamill, J., & Gruber, A. H. (2017). Is changing footstrike pattern beneficial to runners? Journal of Sport and Health Science, 6(2), 146–153. https://doi.org/10.1016/j.jshs.2017.02.004

Paquette, M. R., Powell, D. W., & DeVita, P. (2021). Age and training volume influence joint kinetics during running. Scandinavian Journal of Medicine & Science in Sports, 31(2), 380–387. https://doi.org/10.1111/sms.13857

Rice, H., & Patel, M. (2017). Manipulation of foot strike and footwear increases achilles tendon loading during running. The American Journal of Sports Medicine, 45(10), 2411–2417. https://doi.org/10.1177/0363546517704429

Review paper:
Kim, H. K., Mirjalili, S. A., & Fernandez, J. (2018). Gait kinetics, kinematics, spatiotemporal and foot plantar pressure alteration in response to long-distance running: Systematic review. Human Movement Science, 57, 342–356. https://doi.org/10.1016/j.humov.2017.09.012

Modelling of human movement:
Meardon, S. A., & Derrick, T. R. (2014). Effect of step width manipulation on tibial stress during running. Journal of Biomechanics, 47(11), 2738–2744. https://doi.org/10.1016/j.jbiomech.2014.04.047

Hiley, M. J., & Yeadon, M. R. (2008). Optimisation of high bar circling technique for consistent performance of a triple piked somersault dismount. Journal of Biomechanics, 41(8), 1730–1735. https://doi.org/10.1016/j.jbiomech.2008.02.028

Slawinski, J., Heubert, R., Quievre, J., Billat, V., & Hannon, C. (2008). Changes in spring-mass model parameters and energy cost during track running to exhaustion. The Journal of Strength & Conditioning Research, 22(3), 930–936. https://doi.org/10.1519/JSC.0b013e31816a4475

Review paper:
Sylvester, A. D., Lautzenheiser, S. G., & Kramer, P. A. (2021). A review of musculoskeletal modelling of human locomotion. Interface Focus, 11(5), 20200060. https://doi.org/10.1098/rsfs.2020.0060

Musculoskeletal connective tissue: function and adaptation to training:
Eriksen, C. S., Svensson, R. B., Gylling, A. T., Couppé, C., Magnusson, S. P., & Kjaer, M. (2019). Load magnitude affects patellar tendon mechanical properties but not collagen or collagen cross-linking after long-term strength training in older adults. BMC Geriatrics, 19(1), 30. https://doi.org/10.1186/s12877-019-1043-0

Wade, L., Lichtwark, G., & Farris, D. J. (2018). Movement strategies for countermovement jumping are potentially influenced by elastic energy stored and released from tendons. Scientific Reports, 8(1), 2300. https://doi.org/10.1038/s41598-018-20387-0

Baxter, J. R., Corrigan, P., Hullfish, T. J., O’Rourke, P., & Silbernagel, K. G. (2021). Exercise progression to incrementally load the achilles tendon. Medicine and Science in Sports and Exercise, 53(1), 124–130. https://doi.org/10.1249/MSS.0000000000002459

Review paper:
Wiesinger, H.-P., Kösters, A., Müller, E., & Seynnes, O. R. (2015). Effects of increased loading on in vivo tendon properties: A systematic review. Medicine and Science in Sports and Exercise, 47(9), 1885–1895. https://doi.org/10.1249/MSS.0000000000000603

Jumping capacity in testing and training?
Helland, C., Midttun, M., Saeland, F., Haugvad, L., Olstad, D. S., Solberg, P. A., & Paulsen, G. (2020). A strength-oriented exercise session required more recovery time than a power-oriented exercise session with equal work. PeerJ. https://doi.org/10.7717/peerj.10044

Jakobsen, M. D., Sundstrup, E., Randers, M. B., Kjaer, M., Andersen, L. L., Krustrup, P., & Aagaard, P. (2012). The effect of strength training, recreational soccer and running exercise on stretch-shortening cycle muscle performance during countermovement jumping. Human Movement Science, 31(4), 970-986. https://doi.org/10.1016/j.humov.2011.10.001

Moir, G. L. (2008). Three different methods of calculating vertical jump height from force platform data in men and women. Measurement in Physical Education and Exercise, 12(4), 207-218. https://doi.org/10.1080/10913670802349766

Review paper:
McMahon, J. J., Suchomel, T., Lake, J. P., & Comfort, P. (2018). Understanding the key phases of the countermovement jump force-time curve. Strength and Conditioning Journal, 40(4), 96-106. https://doi.org/10.1519/SSC.0000000000000375
PDF available through Canvas, non online access.

Stretching exercise. What is it good for?
Hough, P. A., Ross, E. Z., & Howatson, G. (2009). Effects of dynamic and static stretching on vertical jump performance and electromyographic activity. Journal of Strength and Conditioning Research23(2), 507–512. https://doi.org/10.1519/JSC.0b013e31818cc65d

Magnusson, S. P., Simonsen, E. B., Aagaard, P., Sørensen, H., & Kjaer, M. (1996). A mechanism for altered flexibility in human skeletal muscle. The Journal of Physiology497(Pt 1), 291–298. https://doi.org/10.1113/jphysiol.1996.sp021768

Nagle, E. F. (2010). Effect of single set dynamic and static stretching exercise on jump height in college-age recreational athletes. International Journal of Exercise Science, 3(4), 8. https://digitalcommons.wku.edu/ijes/vol3/iss4/8/

Review papers:
Behm, D. G., Blazevich, A. J., Kay, A. D., & McHugh, M. (2016). Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: A systematic review. Applied Physiology, Nutrition, and Metabolism, 41(1), 1–11. https://doi.org/10.1139/apnm-2015-0235

McHugh, M. P., & Cosgrave, C. H. (2010). To stretch or not to stretch: the role of stretching in injury prevention and performance. Scandinavian Journal of Medicine & Science in Sports20(2), 169–181. https://doi.org/10.1111/j.1600-0838.2009.01058.x

Applied thechnology:
Training analyses in team sports:
Alexiou, H., & Coutts, A. J. (2008). A Comparison of methods used for quantifying internal training load in women soccer players. International Journal of Sports Physiology and Performance, 3(3), 320-330. https://doi.org/10.1123/ijspp.3.3.320

Dalen-Lorentsen, T., Bjørneboe, J., Clarsen, B., Vagle, M., Fagerland, M. W., & Andersen, T. E. (2020). Does load management using the acute:chronic workload ratio prevent health problems? A cluster randomised trial of 482 elite youth footballers of both sexes. British Journal of Sports Medicine. https://doi.org/10.1136/bjsports-2020-103003

Starling, L. T., & Lambert, M. I. (2018). Monitoring rugby players for fitness and fatigue: What do coaches want? International Journal of Sports Physiology and Performance, 13(6), 777. https://doi.org/10.1123/ijspp.2017-0416 

Review paper:
West, S. W., Clubb, J., Torres-Ronda, L., Howells, D., Leng, E., Vescovi, J. D., Carmody, S., Posthumus, M., Dalen-Lorentsen, T., & Windt, J. (2021). More than a metric: How training load is used in elite sport for athlete management. International Journal of Sports Medicine, 42(4), 300-306. https://doi.org/10.1055/a-1268-8791

The application of sport science knowledge in elite sport practice:
Fullagar, H. H. K., McCall, A., Impellizzeri, F. M., Favero, T., & Coutts, A. J. (2019). The translation of sport science research to the field: A current opinion and overview on the perceptions of practitioners, researchers and coaches. Sports Medicine, 49(12), 1817-1824. https://doi.org/10.1007/s40279-019-01139-0

Giblin, G., Tor, E., & Parrington, L. (2016). The impact of technology on elite sports performance. Sensoria: A Journal of Mind, Brain & Culture, 12(2). http://doi.org/10.7790/sa.v12i2.436
PDF available through Canvas, non online access.

Houtmeyers, K. C., Jaspers, A., & Figueiredo, P. (2021). Managing the training process in elite sports: From descriptive to prescriptive data analytics. International Journal of Sports Physiology and Performance, 16(11), 1719-1723. https://doi.org/10.1123/ijspp.2020-0958

Williams, S. J., & Kendall, K. (2007). Perceptions of elite coaches and sports scientists of the research needs for elite coaching practice. Journal of Sports Sciences, 25(14), 1577-1586. https://doi.org/10.1080/02640410701245550

Review article:
Hammes, F. (2022). Artificial intelligence in elite sports: Anarrative review of success stories and challenges. Frontiers in Sports and Active Living, 4. 861466. https://doi.org/10.3389/fspor.2022.861466

Strength & power in swimming:
Gonjo, T., Njøs, N., Eriksrud, O., & Olstad, B.H. (2021). The relationship between selected load-velocity profile parameters and 50 m front crawl swimming performance. Frontiers in Physiology, 12, 625411. https://doi.org/10.3389/fphys.2021.625411

Gonjo, T., Eriksrud, O., Papoutsis, F., & Olstad, B.H. (2020). Relationships between a load-velocity profile and sprint performance in butterfly swimming. International Journal of Sports Medicine, 41(7), 461-467. https://doi.org/10.1055/a-1103-2114

Olstad, B. H., Gonjo, T., Njøs, N., Abächerli, K., & Eriksrud, O. (2020). Reliability of load-velocity profiling in front crawl swimming. Frontiers in Physiology, 11, 574306. https://doi.org/10.3389/fphys.2020.574306

Review article:
Crowley, E., Harrison, A. J., & Lyons, M. (2017). The impact of resistance training on swimming performance: A systematic review. Sports Medicine, 47(11), 2285-2307. https://doi.org/10.1007/s40279-017-0730-2